THE UNIYVERSITY OF

NEWCASTLE

AUSTRALIA

NOVA
University of Newcastle Research Online

nhova.newcastle.edu.au

Varadharajan, Vijay; Karmakar, Kallol; Tupakula, Uday; Hitchens, Michael; ‘A policy-
based security architecture for software defined networks.” Published in IEEE

Transactions on Information Forensics and Security Vol. 14, Issue 4, p. 897-912 (2019)

Accessed from: http://dx.doi.org/10.1109/TIFS.2018.2868220

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Accessed from: http://hdl.handle.net/1959.13/1414572

http://hdl.handle.net/1959.13/1414572
http://dx.doi.org/10.1109/TIFS.2018.2868220

A Policy based Security Architecture for Software
Defined Networks

Vijay Varadharajan, Senior Member, IEEE, Kallol Karmakar, Student Member, IEEE, and Uday
Tupakula, Member, IEEE and Michael Hitchens

Abstract—As networks expand in size and complexity, they pose
greater administrative and management challenges. Software
Defined Networks (SDN) offer a promising approach to meeting
some of these challenges. In this paper, we propose a policy
driven security architecture for securing end to end services
across multiple SDN domains. We develop a language based
approach to design security policies that are relevant for securing
SDN services and communications. We describe the policy
language and its use in specifying security policies to control
the flow of information in a multi-domain SDN. We demonstrate
the specification of fine grained security policies based on a
variety of attributes such as parameters associated with users
and devices/switches, context information such as location and
routing information, and services accessed in SDN as well as
security attributes associated with the switches and Controllers
in different domains. An important feature of our architecture
is its ability to specify path and flow based security policies,
which are significant for securing end to end services in SDNs.
We describe the design and the implementation of our proposed
policy based security architecture and demonstrate its use in
scenarios involving both intra and inter-domain communications
with multiple SDN Controllers. We analyse the performance
characteristics of our architecture as well as discuss how our
architecture is able to counteract various security attacks. The
dynamic security policy based approach and the distribution
of corresponding security capabilities intelligently as a service
layer that enable flow based security enforcement and protection
of multitude of network devices against attacks are important
contributions of this paper.

Index Terms—Software Defined Networking (SDN) Security,
Security Policies, Security Architecture, Inter-domain Security

I. INTRODUCTION

S networks expand in size and complexity, they pose

greater administrative and management challenges. In-
creasingly, current networks are highly heterogeneous with
many different devices, from small sensors and appliance to
network devices such as routers to many different clients and
servers and peripherals. Furthermore, these devices use differ-
ent network technologies such as fixed, wireless and mobile
networks. In such a complex heterogeneous environment, man-
agement of network devices (such as switches and routers),
the mobility of users and devices, the dynamic variation in
networks (due to failure of devices and network links), as well
as the dramatic increase in security attacks are posing serious
challenges. Software Defined Networks (SDN) [1] offer a
promising approach to meeting some of these challenges.

Vijay Varadharajan is with the Faculty of Engineering, The University of
Newcastle, Australia. E-mail: vijay.varadharajan @newcastle.edu.au

Kallol Karmakar and Uday Tupakula are with the School of
Electrical Engineering and Computing, The University of Newcastle,
Australia. E-mail: kallolKrishna.Karmakar @newcastle.edu.au and
uday.tupakula@newcastle.edu.au

Michael Hitchens is with the
Science and Engineering,
michael.hitchens @mgq.edu.au

Dept of Computing, Faculty of
Macquarie University, Australia. E-mail:

SDN is rapidly emerging as a disruptive technology, poised
to change communication networks in much the same way
cloud computing has changed the “compute” world.

SDN is altering the texture of modern networking, mov-
ing away from the current control protocols dominant in
the TCP/IP Internet stack, towards something more flexible
and programmable. It has the potential to change the way
networking is conducted, by enabling devices that are open
and controllable by external software. This is in contrast to
todays proprietary network equipment that has fixed protocols
embedded into them by the vendors. SDN opens up new av-
enues of research to realize network capabilities that until now
were impossible or extremely cumbersome, thereby helping
to make future networks more manageable and practicable.
The separation of the control plane from the data plane
in SDN results in the network switches becoming simpler
forwarding devices with the more sophisticated control logic
implemented in software in a logically centralized Controller.
This decoupling in SDN enables the design of new and inno-
vative network functions and protocols. First, it is simpler and
less error-prone to modify network policies through software,
than via low-level device configurations. Second, a control
program can automatically react to spurious changes in the
network state and thus maintain up to date high-level policies.
Third, the centralization of the control logic in a Controller
with network domain wide knowledge can help to simplify
the development of sophisticated network functions. Although
SDN offers many advantages in dealing with the complexities
of current networks, a critical issue in SDN at present is that
of security; the current state of the art in SDN security is not
mature [2]. Securing networks is becoming more challenging
to businesses, especially with bring your own devices (BYOD),
increased cloud adoption and the Internet of Things (IoT).
The main causes of security concerns probably lie in SDNs
main benefits, namely programmability of networks and the
centralization of control logic. These capabilities introduce
new security threats and attack surfaces, which do not exist in
traditional networks. Ironically, the closed (proprietary) nature
of network switches together with the heterogeneity of vendor
software and integrated control functions previously offered
natural layers of defense in traditional networks. That is, an
attack against a network device from a specific vendor will
often not work against another network device from another
vendor. In some sense, the diversity of network devices and
protocols and the secrecy associated with proprietary systems
provides a certain level of security. In contrast, SDN with
its standardized interfaces and protocols (e.g. OpenFlow [I]]
protocol between the Controller and the switches) can provide
a focused target for attackers; furthermore, any potential
logical security faults in compliant implementations of the

SDN protocols and software can increase the security risks.
For example, an attack similar to Stuxnet [3[, which targeted
the operation of many devices in specific networked infrastruc-
tures by automatically modifying their control programs and
configurations, could have dramatic consequences in a highly
programmable SDN network. In addition, the centralization of
functionality in the SDN Controller presents another point of
security weakness.

In a SDN environment, the control plane specifies the policies
from which the flow rules are derived and enforced in the
data plane at the SDN switches and network devices. In
this paper, we consider the design of security policies for
the establishment of secure end-to-end communication paths
in a distributed SDN environment. In large networks with
multiple autonomous system domains crossing organizational
boundaries, paths must be selected according to policy related
parameters involving security attributes in addition to the
traditional parameters of connectivity, congestion and costs.
The ability to distribute security capabilities intelligently as
a service layer and to have a dynamic security policy based
approach to securing a multitude of devices against threats
are important contributions of this paper. For instance, we
can have policies that enforce the requirement that certain
traffic must pass through certain switches which are more
secure than others. In this case, a specific set of switches
are obligatorily traversed for this traffic. Another example
is that to counteract particular threats, certain switches may
be forbidden to be in the paths of certain defined traffic.
Our policy based architecture combined with the Controllers
network domain wide visibility offers a powerful approach to
enforcing security mechanisms to counteract security attacks
in SDN. This capability is achieved in both the intra- and inter-
domain contexts with multiple domains managed by different
SDN Controllers.

The main contribution of this paper is the design of a policy-
based security architecture for a distributed SDN environment.
The architecture presented here enables specification of en-
forceable access policy constraints on communication between
end users/devices and services in SDNs across multiple do-
mains. We present a language-based approach to policy spec-
ification derived from the syntax specified in RFC1102 [4].
The use of a security policy language-based approach enables
secure flow of packets and secure management of paths in a
distributed SDN.

We consider that the proposed architecture and language
have several novel features for SDN security. The security
policies can be specified and enforced at a fine-grained level
using the context associated with the flows, such as location,
routing information, services accessed as well as security
labels associated with the switches and Controllers, to securely
manage communication. This can assist in detecting different
types of attack flows, thus counteracting various threats in a
SDN environment. The language allows us to enforce policies
for either paths or flows based on security attributes. For
example, a particular path can be restricted to only switches
with a security label of at least high and a specified level of
throughput while also being constrained to a set of specified
(secure) paths. Such path-based policies are critical when

securing data from sensitive applications but are also useful
for applications with different quality of service requirements.
For instance, video traffic requiring certain bandwidth needs
to take a path where the switches and channels have the
necessary capabilities (compared to just supporting audio
traffic). As another example, suppose due to a DDoS attack,
traffic from an end host is not able to get through the network.
Our SDN security architecture is able to detect the DDoS
attack efficiently, for example with a flow installation rate
policy. Once the attack is detected an alternative path can
be established for the traffic from the end host to reach the
required destination, or a drop rule can be activated targeting
the malicious host(s).

This highlights another novel feature of the proposed security
architecture, that is, the use of the visibility of the network
domain and connectivity to dynamically manage flow and
path based security policies to achieve secure communications
and efficient provision of SDN services across multiple do-
mains. Combined with this feature, our architecture has the
potential to dynamically update security policies based on the
distributed network state and detection of attacks, which is
particularly important to counteract emerging security threats.
Such architectural features are vital for achieving resilient
network systems, especially in securing critical infrastructures.
We consider that, at the present time, there does not exist
a security architecture for distributed SDN with multiple
domains such as the one we have proposed. Furthermore
we have implemented the proposed architecture and carried
out performance and security analysis demonstrating that the
proposed solution has the potential to be useful for practical
SDN applications. We have conducted a detailed case study
by considering specific attacks in SDN and demonstrated how
our security architecture can efficiently deal with these attacks.
We have also shown that the proposed security architecture
is scalable by analysing AARNet network topology, which
is the network that provides Internet connectivity to all the
universities across Australia.

The paper is organized as follows: After first outlining a brief
introduction to SDN, in Section [[I, we describe the threat
model for our proposed security architecture. We consider
the various security threats in a SDN environment such as
threats to the Controller, the network switches as well as
the communications between the switches and the Controller,
and the communications between the Controllers in multiple
domains. We then specifically focus on the security threats that
our security architecture is designed to address and outline the
benefits of our approach. Section describes our proposed
policy based security architecture for a distributed SDN. First,
we give an overview of the proposed architecture. Then, we
describe the specification of security policies, which is a key
component of the proposed policy based architecture. Then
we provide a brief walk-through of the security architecture
using an inter-domain scenario with multiple domains and
SDN Controllers. Section [[V] describes the implementation of
the security architecture and its various components. Section
presents the implementation and the performance results.
We discuss security policies in both intra and inter domain
contexts and illustrate them with example scenarios. Security

|
Application Plane I Applications |J
Northbound Interface

Control Plane

Southbound Interface (e. g OpenFlow)

WAP- Wireless Access Point

Fig. 1: Standard SDN Architecture

Data Plane

analysis of some of the implemented scenarios is given in
Section In Section [VII] we review the relevant related
works and compare our architecture with existing solutions.
Finally Section concludes the paper and outlines some
future work.

II. SDN ARCHITECTURE AND THREAT MODEL
A. Basic SDN Architecture

Figure [I] shows an overview of the SDN architecture with
different components in the control plane and data plane. The
control plane consists of a logically centralized Controller
(which itself can be distributed in practice) with native appli-
cations for management of devices in a SDN network. There
can be several third party applications that can be hosted
(or access different services) in the Controller. The interface
between the Controller and the applications is referred to as
the North Bound Interface. The data plane consists of the
networking devices and the interface between the Controller
and the networking devices is referred to as the South Bound
Interface. OpenFlow [3] is the most commonly used protocol
for communication between the Controller and the networking
devices. Other protocols include sFlow and SNMP that can
be used for communication between the Controller and the
network devices. In the SDN terminology, a switch refers to
any networking device that operates in Layers 2 to 7 in the
OSI model.

The Controller manages the flow-entries in the flow tables
of the switches through a secure channel (that exists in the
switch itself). This management process might be done both
reactively (in response to packets) as well as proactively.
There are several SDN Controllers [6] available using different
programming languages and environments. For example, NOX
is based on C++ and Python programming languages; POX is
based on Python; and Beacon and Floodlight are based on
Java.

An OpenFlow compatible switch in the data plane contains
three parts: i) A Flow Table, with an action linked with each
flow entry, which tells the switch how to process the flow; ii)
A channel that joins the switch to a remote control process (the
Controller), allowing communication between a Controller and
the switch; communication instructions and packets to be sent
between a Controller and the switch; using the OpenFlow
protocol; iii) The OpenFlow protocol, which provides an open
and standard way for a Controller to interconnect with a
switch.

B. Our Network Architecture and Threat Model

Our network architecture consists of multiple Autonomous
System (AS) domains, with each domain having packet for-

warding devices such as routers, gateways and switches and
end hosts (which are connected to users). In general, there can
be multiple SDN Controllers but for simplicity, we assume
that each domain contains one SDN Controller. End hosts
are connected to the forwarding devices. For clarity, we will
assume that each AS has a separate entry and exit gateway.
These are OpenFlow supported forwarding devices. Though
we assume OpenFlow switches, our solution will work with
legacy switches, as long as there exists a path which has
some OpenFlow switches. (Furthermore, migration solutions
are being developed which allow incremental migration to
software defined networks from current networks, e.g. [7]).
The traffic generated by the end hosts and forwarded by the
network devices is subjected to security policies specified in
the Controller. As there are multiple SDN domains, we have
both intra-domain as well as inter-domain communications.
In an intra-domain communication, the traffic from source
to destination passes through devices within a single SDN
domain and the requested services are provided by the servers
and devices in the same domain. In this case, the traffic
and service requests are subjected to security policies in the
SDN Controller of that domain. Inter-domain communications
involving multiple domains require cooperation between SDN
Controllers, as the communications are subject to security
policies in multiple SDN Controllers.

There are different types of security attacks that are possible in
a SDN. There can be attacks on the control plane communica-
tions between the switches and the Controller in a domain as
well as attacks on the data plane communications. In general,
threats in SDN domains can be categorized into:

1) Threats against a SDN Controller

2) Threats against the networking devices (switches)

3) Threats against communications between the Controller
and the networking devices:

4) Threats against communications between different SDN
Controllers in different AS domains

1. Threats against a SDN Controller: As the Controller is at
the heart of a SDN domain, if the Controller is compromised,
then the whole network under that SDN Controller is made
vulnerable. A Controller can be compromised in three ways:

i) due to malicious software errors or bugs in the Controller
software system such as the operating system;

ii) due to threats arising from malicious or compromised
applications running on top of or in the Controller;

iii) due to threats from the underlying network devices such
as the OpenFlow switches.

The threats and attacks arising in the first two categories (i)
and (ii) are somewhat similar to those that occur in software
and operating systems. Such attacks can include common ones
such as cross-site scripting, SQL injection, command injection
and buffer overflow. For instance, if a SDN application uses
a web-interface, then it can be used by an attacker to install
a malicious script which can bypass the authentication mech-
anism in the Controller. This will enable the attacker to gain
access to the Controller and carry put further attacks such as
eavesdropping on the device traffic and delete/modify flows in
the flow entry tables. Security techniques to counteract these

threats and attacks are similar to those used in software system
security. These attacks are not the focus of this paper. Security
mechanisms described in works such as [8] and [9] discuss
some such attacks in the Controller.

Our security architecture addresses the threats against the
Controller in (iii), which occur via the switching fabric. The
connections that a switch can establish are based on the
policies specified in our security architecture, thereby helping
to detect attack flows and counteract them. For instance,
malicious hosts connected to the switches can launch flooding
attacks by forging IPs [2]]. These communication requests from
the forged IPs will look like legitimate requests to the switches.
In a proactive mode, they will be dropped immediately. In the
reactive mode, since they are new flows, a switch will generate
a request to the Controller. This can lead to denial of service
attacks against the Controller. Our security architecture has
fine grained policies which are able to detect malicious host
and flooding attacks, and drop any further requests from this
host by installing drop rules to discard further flooding from
the switches connected to that host.

2. Threats against Network Devices: Forwarding network
devices are usually physically closer to the attackers. Often
it is the less sophisticated forwarding devices that are the
main targets for attacks. Each device contains some number
of flow rules in a flow table which are used to route the
packets. For instance, an attacker who knows the IP range of
the Controller domain can flood a network device with forged
packets. Also, if an attacker can access multiple hosts, s/he
can launch denial of service (DoS) attacks by continuously
sending random IP packets. An attacker may also be able to
listen on the links between any of the forwarding devices. This
is possible because often there is no protection on packets or
policies to route the packet through specific switches (thereby
preventing access to the flows) [10]. This can also lead to
subsequent attacks by spoofing the address of any of the hosts
and launching DoS and Man-in-the-Middle attacks as well
as illegal modification of the flow table entries. Our security
architecture will help to detect attack traffic from malicious
hosts towards the switches, and block them by dynamically
installing policy rules in the switches.

3. Threats against the Communications between the Controller
and the Network Devices: The protocol between the SDN Con-
troller and the switches need to be protected against security
attacks. Typically the Controller may establish a secure link
with the forwarding devices using security protocols such as
Transport Layer Security (TLS). Some Controllers may not
use the TLS support option in the OpenFlow [10]. In this
case, it makes it vulnerable to traditional security attacks such
as eavesdropping, unauthorized modification of traffic and
masquerading. In this paper, we do not address confidentiality
and related key management issues. The security architecture
proposed in this paper deals with access and information
flow attacks in SDNs. We are currently extending the security
architecture with encryption mechanisms and associated key
management authorities, thereby counteracting such attacks
as well as for providing on demand protection of traffic.
We mention this in the Conclusion. Hence we will not be

addressing these communication threats in this paper. It is
worth pointing out that the techniques used to achieve the
confidentiality and key management services are somewhat
traditional and well known.

4. Threats against the Communications between SDN Con-
trollers in different AS domains: In practice, large networks
may require more than one SDN Controller per AS domain
and there can be many AS domains. Hence there can be attacks
on the communications between different SDN Controllers in
a single AS or in multiple AS domains [2]]. Furthermore, there
is a need to take into account legacy networks. Interception
of traffic between Controllers can lead to many attacks such
as information theft, spoofing and flooding attacks. Hence the
need for a secure routing model for Controller to Controller
communications.

Our security architecture is concerned with authorized flows
across multiple domains by enforcing security policies speci-
fied in different SDN Controllers. These policies detect attacks
such as flooding and spoofing, and ensure only secure and
authorized traffic flows occur between domains. The focus of
this paper is the design of configurable security policies that
can enforce authorized information flows in a distributed SDN
environment with multiple domains managed by different SDN
Controllers. Our architecture enables secure virtual partition
of the network to achieve separation of flows and services,
thereby reducing the attack surface in SDN. It addresses threats
arising from malicious traffic generated by end hosts leading
to attacks against switches and the Controllers; it detects
and prevents unauthorized flows and unauthorized access to
services in a distributed SDN.

Attack Scenarios
In particular, our security architecture can deal with the
following specific attack scenarios:

e (A1) Unauthorized communications between end hosts
within a domain as well as between end hosts residing in
different domains: Attacks such as worms are often suc-
cessful by exploiting the default permit communication
between the hosts in current networks. The infected ma-
chine uses a random source address to scan for vulnerable
machines and spreads the attack.

« (A2) A malicious end host attempting to access services
on the network for which it is not authorized: Insider
threat is one of the difficult challenges when it comes
to securing networks in organisations. Typically this
involves malicious users making use of their machines
to access services for which they are not authorized.

e (A3) Attacks originating from end hosts residing in
certain end locations: Wirelsss LANs are often used in
providing free access to any user. Attackers can misuse
such free access networks for generating attacks. Sim-
ilarly, there can be malicious ISP/AS domains that are
used in the generation of attacks.

e (A4) A malicious end host generating malicious traffic
attacking the switches and/or flows through certain paths
in the network: An attacker can generate malicious traffic
that is sent to the victim switch and/or flood certain paths
in the network with malicious flows.

e (A5) Attacks that chain malicious flows coming from
different locations at different times: A bot master who
has control multiple compromised machines can generate
attacks on the victim networks or AS domains using
compromised machines from different locations at differ-
ent times, with possibly different types of attack traffic.
Such situations can occur in inter-domain scenarios using
attacks such as Crossfire [11] and Coremelt [12]. In
Crossfire, a small set of bots directs low intensity flows to
a large number of publicly accessible servers. These flows
flood a small, carefully chosen, set of links, effectively
disconnecting the target servers from the Internet. In
Coremelt, attackers only send traffic between each other
to clog the network, rather than towards a victim host. It
is difficult to deal with these attacks as the attack traffic
appears as legitimate communications between the end
hosts.

We discuss the security analysis of these attack scenarios in
section [VI| using our proposed architecture.

The deployment of our proposed security architecture will
provide system managers of complex distributed networks
with facilities to configure dynamically security policies which
can detect and counteract different types of attack flows, and
achieve secure provisioning of SDN services.

C. Security Requirements

This section discusses the security requirements that are ad-
dressed in the design of our policy based security architecture.

¢ (R1): Security requirements can vary for different types of
flows in a network. There can be security constraints on
different flow parameters such as the time of flow, loca-
tion of devices that are generating or receiving the flows,
and delay and bandwidth requirements for the flows. For
example, critical applications may have stringent require-
ments for the delivery of messages. Sensitive applications
may require that the traffic is transferred through a secure
channel involving secure switches. Hence, there is a need
to ensure that these specific flow requirements are pro-
visioned correctly in a multi domain SDN environment.
This requires the ability to handle flow specific security
characteristics in inter domain communications in SDNSs.

o (R2) There is a need to secure normal SDN operations, as
the attackers can exploit the weaknesses in the SDN oper-
ations to generate different types of attacks. For example,
currently Controllers do not validate the flow requests
before establishing the routes to enable communication
between the end hosts. For instance, the attacks such
as the spread of worms in traditional networks can also
happen in SDNs. A malicious host scans for random
addresses to find vulnerable machines and spreads the
attacks, establishing routes to destination hosts.

e (R3) As a Controller has the visibility of its network
domain topology and devices, there is a potential to
develop secure northbound applications making use of
the information available at the Controller for achieving
end to end security within a domain.

e (R4) In a multi-domain situation, the end hosts are in-
volved in communication with hosts connected to differ-

Handle Extraction
Creator Engine

T 1 3

Policy Manager

Enforcer Repositories

-

= i
¥ North Bound Interface
| SDN Controller |

PbSA

Fig. 2: Policy based Security Architecture for SDN

ent networks. Hence, there is a need to develop techniques
for achieving end to end security over multiple domains.
However as a Controller has visibility only over its
domain, achieving secure inter domain communications
requires secure co-operation between the Controllers in
different domains.

We discuss how these requirements have been achieved by our
security architecture in Section

III. PoLICY BASED SDN SECURITY ARCHITECTURE
A. Security Architecture Overview

First, we will consider a Policy based Security Architecture for
intra-domain interactions and then we will address the inter-
domain communications enabling end-to-end SDN services
across multiple domains. We will present a high level overview
of the architecture and then describe each component in detail.

Figure 2] shows the Policy based Security Architecture for
securing communication in a SDN domain. The Policy based
Security Architecture can either form part of the SDN Con-
troller or can run as a Security Application on top of the SDN
Controller. We have designed and developed the Policy based
Security Architecture as a Security Application running on top
of a SDN Controller for flexibility reasons. We will refer to
this as Policy based Security Application (PbSA). PbSA is
implemented in the north bound interface of the Controller.
As PbSA is designed in a modular fashion, the components
of PbSA can be implemented on a single host or distributed
over multiple hosts.

We assume that each AS domain is controlled by a SDN
Controller. Each Controller has a Policy Server. The Policy
Server has five main components the Topology and Policy
Repositories, a Policy Manager, a Policy Evaluation Engine,
a Policy Enforcer and a Handle Creator. Each Controller
maintains and updates a Topology Repository and a Policy
Repository. The Topology Repository contains the network
topology information derived using traceroute mechanism
mentioned below. The Policy Repository contains the Policy
Expressions and specifications which are expressed using a
simple language based template described in Section
below. The Policy Manager as the name implies manages every
single operation of the security system. An Evaluation Engine
is used to evaluate the incoming network traffic against the
relevant security policies for that specific traffic. Following
the evaluation, the Policy Manager determines the flow rules
which are then conveyed to the Enforcer module. The Enforcer
module not only fetches the required information from the
south bound interface connected to the switches but also

enforces the flow rules obtained from the Policy Manager. A
Packet Handle Creator module creates the necessary handles
from the visited Controller which is piggy backed with the
payload from the Policy Manager. These handles are used to
check the authenticity of the packet and the enforcement of
policies at the switches.

With intra-domain communications, the traffic from source
to destination passes through devices within a single SDN
domain and the requested services are provided by the servers
and devices in the same domain. In this case, the traffic and
service requests are subjected to security policies in the PbSA
in the SDN Controller of that domain. The routing process
begins from the host that is generating the packets and the
request, which is the source of the communication. This source
host could be any client, such as a mobile device. The initial
packet header from the source host is sent by the switch (to
which this host is connected) to the SDN Controller in the
AS domain. The header contains all the usual network and
service parameters such as the source address, the packet type.
The PbSA application in the Controller extracts the relevant
parameters from the incoming packets and uses the Policy
Repository and the Policy Manager to determine whether
the relevant Policy Expressions are satisfied. If the Policy
Expressions are valid for the incoming packets, then PbSA will
enforce the specified actions as flow rules in the appropriate
data plane devices such as switches to transfer the packets.

Inter-domain communications involving multiple domains re-
quire cooperation between SDN Controllers, as the commu-
nications are subject to security policies of multiple Con-
trollers. Hence inter-domain routing of traffic requires an SDN
Controller in one AS domain to have knowledge of other
Controllers in other AS domains. To create a topological map
of a distributed SDN environment, we have used the traceroute
mechanism. Note that although there are other alternatives
[13] for topology discovery such as Border Gateway Protocol
(BGP) and Internet Routing Registries, each one of them has
its own issues. For the purpose of our prototype, traceroute
was found to be sufficient and the easier one to use. It is not a
critical part of our design and it is mainly an implementation
issue. Each SDN Controller in an AS domain sends an ICMP
signal using a different TTL level (1-6) to make a topological
map of the AS domains. From the architecture point of view,
each Controller has a Topology Repository to store the map-
ping of the topology information. SDN Controllers in each AS
keep this Repository updated by running traceroute at different
times. We have included an additional security attribute, a
Security Label, in the ICMP response message from each
AS SDN Controller. The intention of the Security Label is
to reflect the level of security associated with that particular
Controller. In our current architecture, this Security Label is
hardwired (static) and is specified at the time of installation
of the Controller based on the reputation of the manufacturer
of the Controller. In the next stage of the development of the
architecture, we will develop a meta-level security protocol
that will enable secure and dynamic updating of the Security
Label depending on the behaviour of the Controller over time.
This will be done as part of a trust model which we are in

the process of developing for distributed SDN environment.
We have modified the ICMP response messages to attach the
Security Labels. Hence each AS domain SDN Controller now
has the ability to discover the topological information as well
as the levels of security associated with all the neighboring
AS domain Controllers in this Repository.

Consider the distributed SDN environment shown in Figure [3]
and the associated Topology Repository tables are shown in the
figure too. Each hexagon in Figure [3|represents an AS domain.
We have represented the AS Gateways using Gateway Open-
Flow Switches. In this case, all the controllers use traceroute
by varying TTL level from (1-4). When TTL becomes O, the
Controllers responds with an ICMP TTL exceeded message,
which contains additional information about the AS domain
(Sender IP, ID, Security Label). This information is stored
in the Topology Repository for future use by the respective
SDN Controller. Each Table in Figure 3| shows the Topological
Repository for the respective domains SDN controller. AS_ID
is the identity of a particular AS, Sec_Label is the security
label of the AS domain and Hops is the distance from source to
destination AS. The edge OpenFlow Switches are represented
using the notation ([source AS ID]SW/[destination AS ID]), e.
g. switch connecting AS1 to AS2 is represented as 1.SW2.

In the inter-domain setting, our architecture introduces two
additional mechanisms which have conceptual significance.

Handle: The first mechanism is a Handle. PbSA creates a
Handle and tags to each flow request. The Handle consists
of a list of visited AS domain IDs. The Packet + Handle
is then transferred to the next AS Domain Controller. A
similar process is repeated as the packet goes through all the
transit AS domain SDN Controllers until the packet reaches its
destination. This Handle will be protected for integrity and it
will be used in the validation of flows across multiple domains.

Policy Transfer Token The second mechanism is a Policy
Transfer Token, which comprises policy constraints that are
transferred from one AS domain to the subsequent transit
AS domains and which need to be satisfied by the flow,
as the packets are transferred. These constraints need to be
taken into account in addition to the policy constraints of the
transit domains. For instance, if there is a constraint that the
traffic should only pass through AS domains with security
label greater than a certain threshold, then this constraint
needs to be satisfied by subsequent transit domains. Suppose
an AS domain SDN Controller (with AS ID = 10) has a
constraint that packets should only be forwarded through a
path of AS domain SDN Controllers that have a security
label greater than SL3. In distributed systems, in general,
it is not possible for one domain Controller to know about
policies of other domains. Hence there is a need to transfer
the policy constraints, which are communicated via Policy
Transfer Tokens. The significance of the transfer token is
that the policy constraints that are transferred are only those
policies that are specific to flows and packets in that flow.
Such a mechanism is useful as it enables partial delegation of
policies that are flow dependent. The next section describes
in detail the specification of security policies. In this paper,
we assume that the AS domain Controllers are secure and

172.16.10.0/24
Sl No ASID Sec_Label Hop

1 A1 s 2

2 As3 s13 2

3 A4 sl 2
192.168.52.72

00:00:00:00:01:01

No ASID Sec_Label Hop

1 As2 SL3 2

2 As3 sL3 2 VM
3 As4 sLa
10.0.0.0/24
S

192.168.52.0/24
No ASID Sec_Label Hop
1 As2 SL3 2
2 As3 st3 2
3 Asi stz a

No ASID Sec_label Hop
1 Asi stz 2
2 As2 13 2
3 Asa sta 2 192.168.10.0/24

C = SDN controller VM; Mininet = Mininet VM; Apps = NBI;
Q = Quagga VM (for static routes) & VM Pair = C+ Mininet

Fig. 3: Implemented Network with Routing Information.

trusted, and that if and only if the policies can be satisfied in
the domain, the receiving Controller will accept the packets.

In terms of the notation, we denote the Handle as H Z-AS k which
is tagged to the packet (flow request), where H; is the Handle
for a particular communication i, and k is the ID of the AS
domain SDN Controller which created the Handle. Similarly,
the Policy Transfer Token is denoted as PTTiAS’“, where again
i denotes the specific communication and & denotes the ID of
the AS domain. Hence an AS domain SDN Controller creates
the augmented Packet using the original Packet as well as the
Handle and the Policy Transfer Token.

B. Security Policy Specifications

A key component of the security architecture is the specifica-
tion of security policies that are to be enforced on the SDN
communications. The specified security policies are stored in
a Policy Repository in the PbSA.

We have adopted a simple language based approach to specify
the security policies. We have chosen the policy based routing
syntax specified in RFC1102 [4]] as the basis for our security
policy specifications. Policies are rules that specify a particular
path or paths that packets must follow in the network and the
conditions under which the packets follow these paths. In our
language, we have Policy Expressions specifying a range of
attributes associated with the flow and the entities in the SDN.
These include the following:

o Flow Attributes: Flow ID, sequence of packets associated with the flow,
type of packets, security profile indicating the set of security services
associated with the packets in the flow;

e Autonomous System Domain Attributes: AS identities such as source
AS and destination AS identities (AS Domain ID), sub-net address space
(SRCgyp for source and DST gyyp for destination), identities of
entry (SRCgn7T) and exit (DST gx7) gateway/switch to AS, AS
type (e.g. Commercial domain, Government domain) (S RC1yy. and
DSTrype) and security label associated with the AS (SRC gy, for
source and DST gy, for destination);

o Switch Attributes: Identities of the switches and security label of the
switches;

o Host Attributes: Identities of hosts - source host IP & MAC (SRCp &
SRC prac) and destination host IP & MAC (DST1p & DST prac

o Flow and Domain constraints: Flow constraints (FlowCons) and Domain
constraints (DomCons) associated with a flow such as thresholds, attack
signatures etc.;

o Services - Services for which the Policy Expression applies;

e Time Validity - The time period for which the Policy Expression is
valid and

o Path (ASsp@) - In the case of intra-domain, indicates a specific
sequence of switches whereas with inter-domain communications, it
indicates the sequence of Autonomous Systems traversed by a flow.

The flow constraints are conditions that apply to a specific
flow or a set of flows. For instance, a constraint may specify
that the flow of packets of a specific type (e.g video) should
only go through a set of switches that can provide a certain
bandwidth; or from a security point of view, a constraint could
be that a flow should only go through AS domains that are
at a particular security level. Domain constraints apply to all
flows within a domain. They are used to specify domain-wide
policies. For instance, there could be a domain wide security
policy which may specify that all flows should be protected
for integrity, as part of the security profile. These constraints
are used as part of the actions associated with the Policy
Expressions. Packet (PKT yr7) and Time attributes (77F%)
can be integrated into the constraints. Here, flow attributes
indicates attributes associated with the sequence of packets
in the flow such as type of the incoming packets based on
port numbers, thresholds, security services associated with the
packets and attack signatures. Time attributes represents the
duration time for which a particular Policy Expression is valid.

Alternatively, it is also possible to enforce specific paths by
explicitly specifying the set of switches through which a flow
must go through or a specific set of AS domains that should
be traversed.

The policy language has wild cards in its syntax enabling
specification of policies that can apply to sets or groups of
entities and services. When a Policy Expression is satisfied,
then the associated action is performed which could be simple
as allow or deny the request. Hence using these policy terms,
one is able to specify different sets of Policy Expressions to
deal with a range of scenarios in both intra-domain and inter-
domain communication in a distributed SDN. An action can
also have some attributes. For instance, destination exit switch
(DST gxT) attribute associated with an action indicates the
exit switch through which a flow should pass, once a policy
is satisfied. Hence we are able to specify conditional policies,
constraint and state dependent policies as well as obligation
policies.

In particular, the language can be used to specify policies that
take into account the context associated with the resources
and the devices. For instance, it can be used to specify
protection policies that take into account the attributes of the
devices through which the flow can occur or be displayed.
For certain confidential information, the paths through which
the packets are transferred and the devices/switches which can
process them must have certain security attributes. Such policy
expressions can be specified using simple Boolean algebra on
the security labels. The policy engine evaluates the Boolean
expression to determine whether the condition on the security
labels is satisfied or not. The language can also be used to
specify release policies associated with the end points through
which the traffic can be released, requiring certain security
attributes. These types of policies, namely protection and
release policies, are common in the context of content based
security, and are significant when it comes to the provision of
SDN services.

Using the policy terms mentioned above, a simplified Policy
Expression template could be as follows:

TABLE I: Stored Policy Terms

Policy Expression

AsI PE{ST —< «,(10.0.0.0/24, EDU, SL2), (192.168.52.0/24), 10.0.0.2,
s, #, ok, %, %, SL24 =, (80, 443), conf, x >:< (1SW2, Allow) >

As2 PEfS2 =< «,(10.0.0.0/24, EDU, SL2), (192.168.52.0/24), 10.0.0.2,
s, %, %, %, %, SL2+4 =, (80, 443), conf, (AS1) >:< Allow >

AS3 PE4S3 =< «,(10.0.0.0/25, EDU, SL2), (192.168.52.0/24),

%, %, ok, %, SL2+ =, (80, 443), conf, (AS1, AS2) >:< Allow >
PEZSY =< +,(10.0.0.0/25, EDU, SL2), (192.168.52.0/24),
AS4 10.0.0.2, 192.168.52.72, *, , *, *, %, (80, 443), con f,

(AS1, AS2, AS3) >:< Allow >

PEZAS’“= < FlowID, SourceAS, DestAS, SourceHostI P,
DestHostI P, Source M AC, Dest M AC, Usser, FlowCons,
DomCons, Services, Sec — Profile, Path >:< Actions > (1)
where ¢ is the Policy Expression number and £ is the AS
ID. This is a generic Policy Expression for both intra and
inter-domain. In the following sections, we will explain the
use cases for both intra and inter-domain. For simplicity, we
have omitted the AS ID notation in intra-domain expressions.
Also, in intra-domain, path indicates a set of switches within
the domain while in inter-domain path refers to a set of AS
domains.

In general, we have a number of Policy Expressions stored
in the SDN Policy Repository. Such a template enables us to
specify a range of policies for different users (and hosts), from
different locations, accessing different services using different
devices following different paths. Later we will illustrate the
use of such policy expressions in both intra and inter domain
environments when we discuss the results of our system
implementation in Section

C. Security Architecture Walk-through

Let us now give a brief walk-through of the operation of
the proposed security architecture described above. We will
use the inter-domain scenario given in Figure [3] to illustrate
the various steps involved. The Tables beside each of the AS
domains in Figure [3| represent the Topology Repository. Table
[shows the policies in each of these AS domains stored in
the Policy Repositories of PbSA.

The initial packet header from the source host is sent by
the switch (to which this host is connected) to the SDN
Controller in that AS domain. The PbSA application in the
Controller extracts the relevant parameters from the incoming
packets and uses the Policy Repository and the Policy Manager
to determine whether the relevant Policy Expressions are
satisfied. If the Policy Expressions are valid for the incoming
packets, then PbSA will enforce the specified actions as flow
rules in the appropriate data plane devices such as switches to
transfer the packets.

In this scenario, the host machine X (with IP address 10.0.0.2)
wishes to communicate with the host machine Y (with IP ad-
dress 192.168.52.72). As X and Y reside in two different AS
domains, communication between them occurs via transit AS
domains. At first, packets from X go to the SDN Controller
of AS1. As the Policy Expression PE{**! in AS1 matches
with this particular network traffic, HTTP & HTTPS traffic
originating from 10.0.0.2 are allowed to go to Y in the subnet
192.168.52.0/24. However let us assume that there is a flow
constraint which specifies communications between X and Y
must occur only through domains which have security levels
greater than or equal to SL2. This will result in the traffic

routed through the AS2 domain via the OpenFlow Switch
1SW2 (Connected to AS1). A similar process occurs in AS2
and the traffic is sent to Y in AS4.

We also have constraints such as a flow or flows between
two entities in a domain A and B should only go through
paths whose security labels are greater than or equal to a
specific security label L. Satisfying this rule requires the
PbSA to determine the labels of the various paths between the
devices, and then check whether the flow constraint is satisfied.
The policy rules can have Boolean expressions such as the
security label of the switch S; should be less than or equal
to the security label of the neighbouring switch S;;1. If the
neighbouring switch meets this constraint, then the flow will
be directed through it; if not, than another neighbouring switch
will be selected. In general, flow and domain constraints can
require some form of evaluation which is more than just policy
matching.

In general, our architecture can be used in either reactive or
in a proactive mode. In the reactive mode, the first packet of
the flow received by switch will trigger the insertion of flow
entries in switches in the network. This approach presents the
most efficient use of existing flow table memory, but every
new flow incurs an additional setup time. In the proactive
approach, the flow tables in the switches are pre-configured
by the Controller based on policies specified by the network
administrators. This approach has no additional flow setup
time because the forward rule is defined.

IV. SECURITY ARCHITECTURE IMPLEMENTATION

We have implemented and validated our Policy based Security
Architecture for SDN using Open Network Operating System
(ONOS). We have modified the SDN-IP application in ONOS,
and added extra modules for policy control for SDN inter-
domain communications. We have used the Oracle VM Box
environment to create ONOS and Mininet VM pairs, which
act as inter-domains. Each inter-domain SDN Controller runs
our PbSA over ONOS.

A. Implementation Components

Topology Repository: Topology is stored in the Topology
Repository and is implemented using the SDN-IP application.
The repository contains topological information of the neigh-
boring domains as well as the Security Labels associated with
the SDN Controllers in these domains. As mentioned earlier, in
the current version of the security architecture, these Security
Labels are statically assigned based on the manufacturer of
the SDN Controller and the reputation of the manufacturer.
However in the next version of the security architecture design,
we intend to update these Security Labels using a dynamic
trust model for SDN.

Policy Repository: Policies are represented as Policy Ex-
pressions in our template based language specifications and
stored in the JSON Policy Repository. We have used the Java
parser to update the JSON Policy Repository. Collections of
Policy Expressions specify the various policies as mentioned
in Section and they control the interactions and packet
transfers both within and between AS domains.

Handle
Creator

Evaluation
Engine

Enforcer

Repositories

¢>[JSON Parser]

{ Policy Manager

Configuration SDNIP

\
{ vice H ArpService

Fig. 4: PbSA Software Modules

Policy Manager: Coordinates the AS policy routing system
and is responsible for the following major tasks:

o Receiving information from the edge OpenFlow switches via the Policy
Enforcer module.

o Aggregating the necessary information to match the Policy Expressions.

o Separating the handles from the payloads in the packets.

o After processing by the Policy Evaluation Engine module, sending the
information to the Packet Handle Creator to create the new handle with
the previous payloads.

o Creating the new packet using the newly created handle and payload.

o Sending instructions to the Policy Enforcer to install the respective
flows.

Policy Evaluation Engine: This module is used for determin-
ing the policies related to the flow. Relevant parameters are
extracted from south-bound traffic with the help of Policy En-
forcer module. The Policy Manager sends these parameters to
the Policy Evaluation Engine. The Engine module checks these
parameters against the Policy Expressions stored in the Policy
Repository. When an appropriate match for the entry is found,
it enforces the corresponding Policy Expression(s) using the
Policy Enforcer module via the Policy Manager. Creation of
the Topology Repository and sending information to/from the
Topology Repository to the Policy Manager are also performed
by the Policy Evaluation Engine. The implementation section
below gives the schema of the JSON based Policy Repository.

Policy Enforcer: It enforces the flow rules as specified by the
Policy Manager for the specific incoming south-bound traffic.

B. Network Setup

We have used ONOS as the SDN Controller in each AS
domain. The machine we are using for simulation purposes is a
Core i7 - 4790 with 3.60 GHz CPU and 32 GB of RAM. Each
SDN controlled AS is constructed by a pair of ONOS based
VM and mininet VM. Our network configuration is shown
in Figure [3| We have added bridged mode Ethernet adapters
to the VM pairs within the VM Box to create communication
channels. BGP route advertisement is done by QUAGGA [14],
which is a BGP software router. This experimental network
setup follows the same approach as the one taken by the
ONOS technical team for their demonstration of SDN-IP
application [[15].

1) Application Modules: Figure []shows the different mod-
ules used in the construction of PbSA. We have combined our
application with SDN-IP (ONOS built-in application for BGP
communications). Here we use SDN-IP BGP route selection
and update for maintaining session modules. PbSA uses this
information to create and update the topology in the Topology
Repository.

SDN-IP core consists of a software router which captures the
best BGP routes from BgpSessionManager. BgpSessionMan-
ager maintains sessions, updates and selects the best BGP
routes. ArpService is used for MAC address resolution. ONOS
core configurations are captured by the Configuration module.
IntentService submits the requests in the form of intents to
the ONOS controller. Using these modules, SDN-IP listens to
BGP requests and chooses the best route. SDN-IP has certain
limitations which are mentioned in the related work section
(Section |VII)).

As mentioned above, JSON Repository is used for storing the
Policy Expressions. To update, modify and read the stored
JSON policies, we have used JAVA JSON parser module
(a built-in module in Java). The Policy Manager is a core
component of the PbSA. It maintains all the modules in the
PbSA. The Policy Enforcer acts as a bridging module between
the SDN-IP and our application. It extracts the topological in-
formation from SDN-IP and updates the topological database.
The Policy Manager is aware of the topological information
via this database. Before setting up any new flows between
the available domains, the Policy Manager checks the JSON
policy repository using Policy Evaluation Engine. The Policy
Evaluation Engine parses the particular Policy Expressions and
provides them to the Policy Manager. It compares the policies
and sends the particular action to the Policy Enforcer, which
forwards it to the intent services. These intent requests are
captured by the ONOS Controller and appropriate action is
taken. The Handle Creator is used to create the packets.

Listing 1: AS2 ONOS Policy Database Sample

£
7id”: U217,
“flowid”: 7%,
“srcasid”: 7%,
”srcassub”: 710.0.0.0/25”,
“”srcastype”: "EDU”,
“srcastrulabel”: ”SL27,
“dstasid”: Tx7,
“dstassub”: 7192.168.52.0/24”,
“dstastype”: "EDU”,
“dstastrulabel”: ”SL4”,
”srcip”: 710.0.0.27,
“dstip”: 7192.168.52.727,

”srcmac”: 700:00:00:00:00:017,

”dstmac”: 700:00:00:00:01:01",
“user”: 77

“flowcons”: 7%,

“domcons”: "SL2+=",
“services”: "x”,

“secprof”: “conf”,

”seq”: "ASl, AS2”,

“action”: “allow”

}H

2) Policy Example in the Database: Listing [1|shows a single
Policy Expression from AS2 (VM pair 2) Policy Repository
(JSON file). This single Policy Expression (ID 21) states
that, for any packets originating from the subnet 10.0.0.0,
host 10.0.0.2 with the MAC address ending in : 01, whose
destination subnet is 192.168.52.0 must be routed through the
domains whose Security Label is greater than or equal to SL2.

V. RESULTS
A. Implementation Examples

This section presents specific implementation intra and inter
domain scenarios using our architecture.

D
172.56.16.08
60-FF-2F-D2-60-CC
FTP SERVER

172.56.16.04
48-2C-6A-1E-60-FF

N SwWs 1P S
swiip SWa P
S S
A c
172.56.16.02 172.56.16.06

48-2C-6A-1E-59-2F 56-2D-7F-2E-50-FF
Alice HTTP SERVER
sw21p

Fig. 5: Intra-Domain Example Scenario

kallolkk@ubuonos:~$ sudo ovs-ofctl dump-flows s5
[sudo] password for kallolkk:
NXST_FLOW reply (xid=0x4):

ki

e=0x0, duration=1481.532s, table=0, n_packets=1, n_bytes=42, idle_age=1229, arp action

, n_bytes=0, idle_age=15, priority=708,ip
256.16.6 actions=NORMAL
@, duration=1258.197s, table=@, n_packets=8, n_bytes=0, idle_age=1258, priority=60
0, tcp,tp_dst=80 actions=output:2

Fig. 6: Flowdump of the Switch SW5

1) Intra-domain Scenario: Path Based Policy for Services:
This scenario considers specific paths for specific services
requested from the hosts. Consider, for example, HTTP and
FTP servers running on two machines with IP addresses
172.56.16.06 and 172.56.16.08 respectively. We have used
Oracle VM box for this purpose. We have created an Open-
Flow switch matrix with five switches as shown in Figure
Flows from two hosts with IP addresses 172.56.16.02 and
172.56.16.04 are guided through this switch matrix depending
on the services they are intending to access. The Policy
Expressions associated with these requests are as follows:
PE3=< x, %%, 172.56.16.04, 172.56.16.06,48 : 2C : 6A : 1E : 60 :
FF,x,*,x, % 80,{Conf, Intg}, (SW1; SW5; SW4) >:< Allow > (2)
PE4=< x,%,%, 172.56.16.02,172.56.16.08,48 : 2C : 6A : 1E : 59 :
2F, *, %, %, %, (20; 21; 22; 23), Con f, (SW1; SW3; SW4) >:< Allow >
3)

Equation 2 (PFEj3) states that flows from host with IP
172.56.16.04 and MAC 48 : 2C' : 6A : 1E : 60 : FF
accessing the HTTP server on IP 172.56.16.06, should be
protected for confidentiality and integrity, and forwarded via
OpenFlow switch SW1->SW5->S5W4.

According to the Equation 3 (PE,), flows to the FTP server
running on IP 172.56.16.08 from host with the IP address
172.56.16.02 and MAC address 48 : 2C' : 6A : 1E : 59 : 2F
are to be forwarded via a OpenFlow switch path SW1->SW3-
>SW4. This Policy Expression also instructs the Controller to
protect the flow for confidentiality. Also, all HTTP packets are
to be routed through SW1->SW5->SW4. Figure [6] shows

the flow dump of the SWS5 switch. The first flow is used
for network discovery (ARP). The second flow is for the
response from the Web Server running in IP 172.56.16.06,
which tells the Controller that any IP packet from the Web
Server should be handled normally. The third flow is dedicated
for HTTP packets and indicates that all HTTP traffic should
take an output path Port 2 (in the Open vSwitch). For the FTP
traffic towards the FTP server, similar type of flows are being
installed in Switches 3, 1 and 4. But this time FTP traffic is
used in the flow rules instead of HTTP.

2) Inter-domain Scenario: Policy specific to User, MAC,
IP Addresses: In this scenario, specific users, devices and IP
addresses from one AS domain are allowed access to other
AS domains running our application over ONOS Controller.
For instance, this scenario can correspond to users from
one organization visiting another organization and trying to
communicate with their home organization corresponding to
a roaming BYOD. This scenario is shown in Figure Here,
user Alice is an employee of an organization belonging to
domain AS2, which is a restricted domain for only authorized
users. We assume that her device’s MAC address and the user
ID are stored in a database, and that our policy application
uses this policy database for checking user Alice’s validity.
Let us now consider Alice roaming with her mobile device
using company X’s (AS1) Internet service. Alice requests to
get access to HTTP employee server running in AS2. Since
there is no policy permitting this flow to the restricted domain,
it will be dropped at the edge router of AS2 domain.

PE$%? =< %, AS2, %, (172.16.10.66), (79 : ¢8 : 82 : b2 : 7b :
la), *, Alice, %, , (80, 443), x, * >:< allow > (4)

Let us now introduce the Policy Expression 8 (PFE§52). This
Policy Expression tells the SDN Controller that any traffic
specific to Alice’s device (M AC : 79 :¢8:82:b2:7b: 1a)
for HTTP traffic must be allowed in AS2 domain. In this
case, when the packet comes to the edge OpenFlow router,
it does not have any flow rule to guide the traffic; so it
forwards the traffic to the SDN Controller. In PbSA, the Policy
Evaluation Engine checks the packet information against the
policies in the Policy Repository. It finds a match with the
Policy Expression PE§452. Therefore, the Policy Manager
asks the Policy Enforcer to install the flow rules in the specific
switches. Finally, Alice is able to communicate with the
employee web portal running in the AS2 domain.

3) Inter-domain Scenario: Policy based Routing for Un-
known Communications: Restricted AS domains often get
requests from unknown domains to pass their traffic. Passing
such traffic can often lead to threats in the transit domains.
PbSA has a default deny policy for dropping all the flows
without a matching permit policy. However, there is an option
in the PbSA to permit such unknown flows through switches
with low security labels. This will enable separation of secure
flows from unknown flows. Hence even if unknown traffic
leads to attacks in the network, this will not impact the
sensitive flows in the switches with high security labels.
Such policies help to create secure channels in the network
dynamically based on policies. Consider the following:
PE{{?? =< %,(10.0.0.0/25, EDU, SL1), *, *,

x5, %, %,k SL1, (80,443), %, % >:< allow > (5)

PE{3 =< %,(10.0.0.0/25, EDU, SL1), *, *,

*, %, %, %, %, SL1, (80,443), %, (AS1, AS2) >:< allow > (6)
Here AS2 and AS3 are transit domains. Within a domain,
recall that the edge routers and switches are tagged with
lowest security labels. In this scenario, SL1 represents the
lowest security label. A Web Server is running in AS4.
Some host in AS1 is trying to communicate with the Web
Server. According to the topology repository, there is no direct
passage to AS4 from AS1. AS1s packets need to go via

transit domains AS2 and AS3. Assume that the domains A.S2
and AS3 are restricted and commercial domains, and hence
access through these domains is limited and controlled by the
PbSA policies. Policy Expressions PE{°? and PE{}>3 are
stored in the Policy Repositories of AS2 and AS3 domains.
The first Policy Expression PE{i°? states that, any packet
originating from domain AS1 (10.0.0.0/25) and destined to
Web Server in AS4 without a matching policy should be given
passage through switches with lowest security label (SL1) in
AS2. Hence in this domain, specific transit switches bearing
a security label SL1 are used to route the traffic for this
particular host. Similar situation occurs with the AS3 transit
domain. Hence the specific host can access the Web Server in
AS4.

4) Flooding Attacks from Malicious Hosts: In this case,
an adversary connected to one of the OpenFlow switches
in our network shown in Figure 5] carries out a flooding
attack. Assume that the prime motivation of the adversary
is to exhaust the Controller by overflowing it with Packet_in
requests. In our network testbed, this is achieved by replacing
Alice’s VM with a Kali Linux VM and launching for instance
a SYN flooding attack. Without PbSA, all the SYN messages
resulted in the establishment of routes. When the PbSA was
activated, it detects requests above the specified threshold from
a switch, and installs a block rule in the switch to drop the
traffic from the malicious host carrying out the attack. In
our architecture, we have used two techniques to counteract
such attacks. The first one involves a heuristic rule based
mechanism using thresholds. This enables us to determine
a threshold for each host connected to the switch and a
threshold for each switch connected to the Controller. These
thresholds are dependent on the number of hosts connected to a
switch and the number of switches connected to the Controller
respectively. Here is a simple example that illustrates these
thresholds. Let *CC’ be the total capacity of Controller that is
connected to "X’ switches. Let ’CS’ be the capacity of the
switch and Y’ is the number of hosts connected to each
switch. Then threshold TS’ for each switch is determined
by TSw = CC/X and the threshold for each end host is
determined by Thost = TS/Y. For example, consider the case of
a single Controller that is connected to 10 switches which are
further connected to 10 end hosts. If the Controller is capable
of processing 1000 requests per second then each switch is
restricted to sending 1000/10 = 100 requests per second and
each end host is restricted to sending 100/10=10 requests per
second. We dynamically vary the weights associated with the
calculation of threshold based on history of packets received;
the threshold policy also varies depending on the number of
running instances of the Controller. For instance, the Con-
troller services can be hosted on multiple machines during
peak hours. As a second technique, we have experimented
with machine learning based technique to detect anomalies.
In this case, the history of packets received is used with a
machine learning algorithm to detect whether an attack is
happening. We have used Bayesian algorithm for this purpose.
We are currently looking into extending this aproach using
other machine learning algorithms [16].

Furthermore, note that with our PbSA architecture, as each

Latency(in ms)
w IS w

N

[}

Without With Without With Without With Without With Without With
PbSA PbSA PbSA PbSA PbSA PbSA PbSA PbSA PbSA PbSA

100SW 200SW 300SW 400SW 500SW

Fig. 7: Latency at the Controller

flow request is validated by the Controllers in the domains
before permitting the flows, attacks such as Crossfire [11]
and Coremelt [[12]] are prevented at the source, which is more
efficient. Even if the attacker generates untrusted traffic with
unknown applications to create these attacks, policies such as
those in Equations 5 and 6 help to route all the unknown and
untrusted domain traffic via the switches with lower security
labels. PbSA uses policies to compartmentalize the forwarding
layer based on the security labels of the switches, thereby
protecting the trusted traffic from unknown traffic.

B. General Performances

We have conducted extensive analysis of the proposed archi-
tecture. In this paper, we only present a subset of these results
due to space restrictions. In particular, we will present the
results related to the secure establishment of routes in intra do-
main and inter domain with the PbSA that we have discussed
above. The results vary for different types of hardware and
the configuration of the devices. Hence, first we present the
baseline result, which shows the performance of the Controller
without the PbSA. Then we enable the PbSA on the Controller
with the same hardware and baseline settings to obtain the
performance results specific to PbSA.

We first present results for latency, flow establishment rate,
and memory overhead in intra-domain scenarios. Then we
present the results related to the inter-domain scenarios. The
latency is the time taken by the Controller to process the
Packet_in message and respond with the Packet_Out message.
It is measured by sending only one Packet_in message to the
Controller without enabling PbSA to obtain the baseline results
for the Controller. Then we enable PbSA with the similar
setup to obtain the latency results. The process is repeated 10
times for each scenario and then we present the average result
for each case. We repeat this process with varying number
of switches. The results show that there is an increase in
the latency with the PbSA compared to the baseline (without
the PbSA). Also note that the latency increases linearly with
the increase in the number of switches with the PbSA. Flow
establishment rate is measured by analysing the number of
flow request messages that can be processed by the Controller
per unit time with 500 switches in the network. We have
tested the flow establishment rate by increasing the number of
flow request messages and observing the number of flow_mod
messages generated by the Controller in the baseline mode
and then compared with PbSA, while varying the number of
policy expresssions (PEs). As shown in Figure [§] there was

5000

4000

/s

3000

flow_mod,

2000

=t
22

_~ Without PbSA
—° 100PE
- 200PE
300PE
- —= -400PE

-~ 500PE

1000 L

1000 2000 3000 4000 5000
Flow requests/ sec

Fig. 8: Flow establishment rate of the Controller

660
640
620

Without With Without With Without With Without With Without With
PbSA PbSA PbSA PbSA PbSA PbSA PbSA PbSA PbSA PbSA

NN N ®
& @ ® ©
8 © o ©

Memory Usage(in MB)
~ ~
S N
o o

@
©
o

100SW

Fig. 9: Memory Overhead with PbSA

200SW 300SW 400SW 500SW

100 percent flow establishment in the baseline mode and with
PbSA, when the flow requests are generated at the rate of
4000 requests per second. However, we see a variation in the
flow establishment when the flow requests are generated at
5000 requests per second. In this case, the baseline mode was
successful in generating 4980 flow_mod messages and there
was a variation in the number of flow_mod messages with
PbSA. The results varied with the number of PEs stored in the
PbSA. We have observed flow establishment rate of 4934 with
100 PEs; 4872 with 200 s PEs; 4806 with 300 PEs, 4724 with
400 PEs and 4611 with 500 PEs. Hence the administrators
have to opt for either upgrading the hardware or running
multiple instances of Controller if flow requests are to be
generated at the rate of 5000 requests/second. Although there
is an overhead with the PbSA, note that the baseline mode
will result in establishing the routes for all the flow requests
(including malicious requests). However, with PbSA only
secure routes will be established corresponding to security
policy specifications. Hence for instance, during an outbreak
of a worm attack, when the compromised hosts randomly
scan for vulnerable machines for spreading the attack, the
baseline mode will result in successful establishment of the
routes for all the malicious flow requests. With PbSA all the
randomly generated malicious flow requests which do not have
corresponding PEs permitting the flows will be dropped. This
is a significant advantage for overcoming attacks in networks,
especially as the malicious flow requests are dropped at the
source end.

We have also analysed memory overhead with PbSA with 500
policy expresseions (PEs) with varying number of switches.
As shown in Figure [0} there is an increase in the memory
usage with PbSA. Also the memory usage increases with the
increase in the number of PEs stored in the PbSA.

With multiple AS domains, we have considered the case

s]

Latency (in ms)

10
[

Without With Without With Without With Without With Without With
PbSA PbSA PbSA PbSA PbSA PbSA PbSA PbSA PbSA PbSA

c1+c2 C14C24C3 C14C2+C3+C4 C14C24C3+CA+C5 C1+C2+C3+CA+C5+C6

Fig. 10: Latency at the Controller for multi AS domains

of sequentially connected Controllers between the source and
the destination hosts. When the source host sends an intent
message to its Controller for communication with a destination
host in another AS domain, the intent message is initially
processed by the Controller in the source AS domain and
then sequentially forwarded to the Controller of a directly
connected AS domain. The process is repeated until the intent
message is forwarded and processed by the Controller to
which the destination host is connected. Similar to the intra
domain situation, we have analysed the performance first in the
baseline mode without the PbSA and then with PbSA enabled
on all the Controllers. In the case of a multi AS domain
scenario, there are three hops for each AS domain, namely
ingress, transit and egress hops. The ingress hop receives
a packet flow from the source end host or from an egress
switch of the previous AS domain. There is one transit switch
connecting the ingress switch to the egress switch. The egress
switch forwards the flow request to the destination host or to
an ingress switch of the next AS domain. We have analysed
latency and end-to-end flow establishment in such a scenario.
Figure [I0]shows the latency results for a multidomain scenario.
In such a scenario, there is latency in each Controller. The
latency results shown are obtained by adding the latency at
each Controller without the PbSA. Then we enabled PbSA
on each Controller and obtained the results. Similar to the
intra-domain scenario, there is an increase in the latency with
the PbSA. Also, the latency increases with the increase in
the number of AS domains in the baseline mode and with
PbSA. However, note that with PbSA, the intent messages
are forwarded to another Controller only if it is permitted
according to the policies specified in the PbSA. All the
malicious intent messages which do not have corresponding
PEs to permit the intent messages are dropped at the first
Controller itself. This leads to saving of resources in the
Controllers in other AS domains. Figure shows the end-
to-end flow establishment time with and without the PbSA.
Although there is some additional delay with the PbSA, note
that such a delay is only applicable to valid flows. There is no
need for flow establishment if there is no corresponding PE
permitting the flow.

C. Attack Performance

Now we consider the attack scenario (4) outlined in Section
-A4l
First we used a single attacking host machine connected

3
0

Without With Without With Without with Without With Without With
PbSA PbSA PbSA PbSA PbSA PbSA PbSA PbSA PbSA PbSA

c1+c2 C1+C2+C3 C1+C2+C3+C4 C1+C2+C3+CA+C5 CL+C2+C3+CA+C5+CH

Fig. 11: End-to-End flow establishment time

Flow Installation Rate vs Packet_in Request
0.600
~+—With out PbSA| With PbSA
(Using Drop Rule)

—+—With PbSA
(Using Threshold Only)

0.500

in ms)

0.400

°
g
H

0.200

Flow Installation Rate (i

0.100

0.001

0.000
250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000
Packet_in (per ms)

Fig. 12: Flow installation rate with varying Packet_in Request

to an OpenFlow switch flooding the Controller with DDoS
Packet_in attack requests and measured the flow installation
rate. Figure presents 3 curves representing 3 different
experimental scenarios: 1) Without PbSA active; 2) With
PbSA active using a threshold policy and 3) With PbSA active
using a drop rule policy.

When PbSA is not active, as expected, the number of flow
installation rate increases with the increase in the number of
Packet_in requests (shown by the blue curve in the Figure [12).
For 250 Packet_in request/ms, the flow installation rate is
around 0.025295 flows/ms and at 5000 Packet_in requests/ms
the flow installation rate is around 0.52904. This incurs
consumption of SDN Controller resources.

With PbSA active, with the threshold policy applied at 4000
requests/ms, the Controller limits the packet requests to 4000.
The PbSA detects the flooding and above the threshold,
it maintains a constant flow installation rate as per policy
expression (to 4000 Packet_in requests/ms). This is shown by
the continuing green line in the Figure The Controller is
not overloaded by malicious Packet_in requests above 4000,
and the flow installation rate remains constant around 0.40001-
0.402631 flows/ms. In the third scenario, we enforced a drop
rule policy above the threshold. In this case, the PbSA detects
the flooding and it installs a drop rule (in the OpenFlow
switch) specific to the malicious host. Hence all the subsequent
packet requests from this malicious host are dropped. However
there is a delay for this to occur and this corresponds to
the time taken to install the drop rule at the switch and for
this rule to be enforced. This is shown by the orange line
in the Figure For 4000-5000 Packet_in requests/ms, the
flow installation rate drops to 0.0012 flows/ms and it remains
constant around 0.0012 - 0.0016 flows/ms.

Throughput vs PE & Host

Without With PbSA
PbSA 500PE

With PbSA =<With PbSA
1000PE 2000PE

With PbSA
4000PE
1750 1704
1671

1650

1564 1568
1550

1480 1465 1489

; 1422
1450 1393 1399 1390

PEeT) 1354

1350 1296 1293 1293
1248

1250 1185 1184

1150 1099

Throughput(Mbits/sec)

1050
500H 1000H 1500H
Number of hosts connected to each domain

2000H

Fig. 13: AARNET topology throughput with varying host and
PE

D. Scalability

We have used the Internet Topology Zoo [17]] to validate
the scalability of our approach. The Internet Topology Zoo
has an extensive collection of network topologies where net-
work providers make their network interconnection topologies
publicly available. Hence it provides an ideal platform to
study scalalbility issues. Currently, the Internet Topology Zoo
contains two hundred and fifty different network topologies
in its database. Each network topology represents the physical
network using an undirected graph, describing the connectivity
between different nodes and domains with information such
as link types, speed, longitudes and latitudes of nodes, and
classification of the network.

In our study, we have represented the actual network topology
of the Australian Universities network, AARNet (Australian
Academic and Research Network) using the Internet Topology
Zoo. The AARNet network is spread across Australia and
provides Internet connectivity to all the Australian universities
and their research partners. This specific AARnet network
topology has been collected in 2010 and contains 19 university
domains. The connection between the nodes represent the
actual link properties such as speed and delay. In our study, we
have augmented this network topology by adding the number
of hosts connected in each university network. This enabled
us to conduct a range of experiments by varying the number
of hosts in each university network and thereby analysing
different network configurations and flows.

We have used Auto-mininet [18] to translate the Internet
Topology Zoo script into SDN specific network topology
(usable by mininet). In our experiments, each university net-
work is translated into a different AS domain (represented
as a collection of virtual machines). We have used a Dell
Power Edge M640 Server consisting of two Intel Xeon Gold
6126 @ 2.6 GHz processors and 384 GB(6x64) of RAM to
construct this experimental network. Each AS domain runs our
PbSA application and other necessary SDN applications. For
this specific setup, we have measured the throughput of the
network topology with and without cross-traffic, and with our
PbSA application running in the SDN Controllers. We have
analysed different scenarios by varying the number of hosts
connected in each domain as well as the number of Policy
Expressions (security policies in the SDN Controller) installed
in each domain. Figure [I3] shows the network throughput for

getl 10.0.0.2

"Node: h1"

TcP
TCP
TCcP
TCP

(b)

Fig. 14: (a) Successful Man-in-The-Middle attack, (b) Suc-
cessful Phantom strom attack

AARNet network topology.

We can see from Figure [[3] that the throughput decreases with
an increasing number of hosts in the AS domains without
PbSA and with PbSA. However the throughput without PbSA
is higher compared to throughput in the corresponding cases
with PbSA. This is to be expected due to the policy evaluation
in the PbSA. Also, the throughput with PbSA decreases with
the increasing number of policy expressions (PEs). The results
are averaged over 10 runs. As an example the overall decrease
in the throughput with PbSA for 500 Policy Expressions is of
the order of 3-7%. Each doubling of the number of Policy
Expressions above that number results in a similar decrease,
as shown in the figure.

E. Case Study

We have conducted a detailed case study of analysing different
attacks in SDN networks that are presented in [[19]]. In this
Section, we describe two specific attack scenarios of this case
study demonstrating how our security architecture PbSA ad-
dresses these two attacks: Man-in-the-Middle (MITM) attack
and Phantom Storm attack. In the case of a MITM attack, the
attacker initially uses a legitimate flow request to ensure that
the Controller establishes a route to the victim node. After
the Controller establishes the route to the victim node, the
attacking node sends a malicious gratuitous ARP request to
poison the ARP cache of the victim node. If the attacker
performs ARP cache poisoning of the two victim nodes, this
will result in the victim node’s flow to be routed through
the attacking node. When performing this attack, an attacker
may view, modify, or stop any traffic between the victim
nodes. This introduces the possibility of additional attacks
such as SSL stripping and session hijacking. In the case of
Phantom Storm, the attacker tricks the legitimate hosts into
generating new flows to an unknown or non-existing device

.B.SNAPSHOT | Duplicate ARP caught: 10.0.0.2

.SNAPSHOT | Duplicate ARP caught: 10.0.08.3
Fig. 15: Multiple Gratuitous ARP detected by PbSA

in the network. This will result in each flow request from the
legitimate hosts generating a Packet_in message to the Con-
troller. Each Packet_in message received at the Controller
will cause the Controller to flood Packet_in messages to the
complete network (except to the ingress port). This can lead to
severe flooding in the network. Please refer to [19] for more
detailed discussion on the above attacks. We have generated
these attacks in the intra-domain setup. Figure shows the
case of successful MITM attack and Figure shows the
case of successful Phantom Storm attack, both without PbSA.
Note the work in [[19]] did not propose any solution to these
problems.

Now let us consider how our PbSA dealt with the above two
attacks.

The Attachment Point (AP) of a host in the network is the
switch and the switch port to which the host is connected. A
hosts AP must be known before the Controller can perform
forwarding to that host. The AP can be learned passively
or actively. Passive learning is done by the Controller ob-
serving network traffic such as from DHCP. In the case of
active learning, when the Controller receives a flow request
(Packet_in) to an unknown host in the network, it floods the
Packet_in message to all the switch ports except the ingress
port. If the host exists in the SDN, then it is expected that the
correct host will respond to the Packet_in and the AP will
be learned. In our architecture, the host’s AP to the SDN is
passively determined from the IP address allocation messages
to the hosts (from the DHCP), when the hosts are connected
to the SDN. The PbSA has all the information related to the
hosts such as its AP to the network, MAC address of the
end host and the IP addresses allocated to the hosts by the
DHCP. In the PbSA, we have an access control policy rule
which validates the IP address and MAC address of the end
hosts. The access policy rule is applied at the switch which
is connected to the end hosts. Hence, the switches validate
the source IP and MAC address for all the traffic generated
by the hosts and drop the traffic if the address is spoofed.
In this case, since the gratuitous ARP request has a spoofed
MAC address, this results in the malicious message getting
dropped. So the attacker’s attempt to poison the ARP cache
of the victim node was not successful. Figure shows the
attack detection with the PbSA. Hence, our PbSA security
architecture can efficiently prevent man-in-the-middle attacks.
Now let us consider how the PbSA prevents the Phantom
Storm attacks in SDN. The main cause of the Phantom Storm
attacks is due to the active learning of the unknown hosts
AP by the Controller. As discussed above, the PbSA becomes
aware of the hosts AP from the DHCP allocation of the IP
address (passive learning). The default operation of the PbSA
does not permit any flows even to the known hosts unless there
is a matching policy rule that permits the flows. So any flow
destined to the unknown host in the network is simply dropped
by the PbSA. Hence there is no possibility for generation of

Phantom Storm attacks in a PbSA enabled SDN.

VI. SECURITY ANALYSIS

First, in this section, we examine how the security
requirements that we originally set out in Section II are
achieved by the proposed security architecture.

(R1) The core aspect of our security architecture PbSA
involves security policy based authorization of flows in
distributed SDN environment. These security policies use
different flow parameters to authorize flows in intra and inter
domain communications in SDN. The policy administrators
can define fine grained security policies based on different
attributes such as users/devices/AS identities and services
running on the end hosts, and context attributes such as time
and location of devices as well as path based specifications
bsaed on security labels of switches.

(R2) PbSA is used for security management of devices in
AS domains and enhancing the security of SDN operations.
For instance, PbSA enforces a default deny policy and drops
all the flow requests that do not satisfy policies permitting
the flow. Threshold policies have been used to detect attacks
such as worms and drop malicious flow requests when the
infected machines generate flooding attacks to destinations.
(R3) PbSA makes use of the network domain wide information
available at the SDN Controller and the security policies
stored in the policy repository for achieving end to end
security within a domain. PbSA is based on modular design
to enable incremental implementation of the required security
modules, making it easily extendable with additional security
features. For instance, we have implemented modules for
path selection based on the security labels of the switches,
and attack detection using signature and thresholds, and are
currently developing key management modules for generating
and distributing keys for securing the communication between
network devices.

(R4) Our PbSA architecture can be used to secure end to end
communication across multiple AS domains. A novel feature
of the proposed security architecture involves the use of the
dynamic visibility of the network connectivity to specify
flow and path based security policies to achieve secure
communications and efficient provision of services across
multiple SDN domains. The specific flow requirements are
validated against the policies of all the AS domains (source,
transit and destination) before the routes are established to
enable authorized communication between the end hosts.
For instance, suppose due to a DDoS attack, traffic from
an end host is not able to get through the network. PbSA
is able to detect the DoS attack efficiently and establish
an alternative path for the traffic from the end host to the
required destination. Moreover, we have shown that PbSA
can enforce policies such as certain communications should
go through a path with certain security attributes. Such path
based policies are critical when securing data from sensitive
applications but are also useful for applications with different

quality of service requirements.
Let us now consider how the proposed security architecture

deals with the attacks mentioned earlier in Section II.

(A1) Our security architecture enforces default deny commu-
nication between the hosts. If the end hosts are located within
the same domain, then the communication is permitted if it
meets the policy requirements of the AS domain. In this case,
the unauthorised communication requests are dropped at the
SDN Controller within the domain. If the end hosts are located
in different domains, then the communication is permitted
if it meets the policy requirements of all the AS domains
involved namely the source AS, transit AS and destination AS
domains. For instance, the scan messages that are destined to
random destination addresses during the spread of worms will
not result in establishment of routes to the destination host.
In this case the unauthorised communication requests will be
dropped at the AS domains where authroization policies are
not satisfied.

(A2) The policy repository in the PbSA has information about
the services hosted on the servers in the domain. The security
policy administrators can specify the usage policies based on
different parameters such as the users/devices/AS identities
and the services running on the end hosts, time of flows and
location of devices. When an end host attempts to access
an unauthorised service, the switch that is connected to the
malicious end host will generate a packet;n message to the
SDN Controller. Since the flow request will not be authorised
by the PbSA, the malicious flow request will be denied.
(A3) As security policy administrators can specify policies
based on different parameters such as location of the devices
and AS domains, attacks originating from hosts residing in
certain locations are prevented by PbSA.

(A4) If an end host is directly targeting any of the switches,
then we have shown that PbSA is able to detect such malicious
attacks. For example, a malicious end host attempting to flood
a particular switch in the network will be prevented by policies
in PbSA detecting such attacks. Also, the attackers do not have
any control on the path taken by the malicious traffic since the
routes are established dynamically for each flow request based
on policy specifications. If there is a specific need for the end
host traffic to take a specific path, then this has to be conveyed
in the intent message and satisfy the policies in the PbSA.
(A5) In our current design, we have used domain constraints
to specify threshold policies over multiple domains. This has
been used to enforce restrictions on new flows. Consider
an attack that chains malicious flows coming from different
locations. Recall that each Controller has a global view of
all the established routes and active flows within its domain.
Also, each flow request is validated by the Controllers in
all the relevant domains before the flow is permitted. If the
traffic at any link is above the threshold specified in the
policies, then the Controller of that domain can select an
alternative path to the destination. If there is no alternative
path to the destination, then the Controller will not accept this
new flow request. Furthermore, if any of the end hosts within
a domain is generating a flow request above the threshold,
then the switch will drop the flows from the maliciuos host
and the Controller will dynamically configure rules in that
switch. Hence, the malicious flow request will not result in the
establishment of the new routes, and the attack that attempts to
chain malicious flows from different locations are prevented.

However the use of such domain constraints across multiple
domains is restrictive; in our future implementation, we will
be relaxing this restriction using a hierarchy of Controllers
and using policy inheritance to better coordinate the policies
in Controllers in different domains.

VII. RELATED WORK

Inter-domain routing forms the main backbone in today’s
network infrastructures such as the Internet. There are some
50,000 autonomous domains. A breakthrough in recent times
in the networking world is the paradigm of SDN and the pro-
grammability, flexibility, and manageability that SDNs offer.
This paper has proposed a security policy based control for
both intra and inter-domain communications in a distributed
SDN environment, which offers significant advantages both in
terms of specification of authorized flows as well as detection
and prevention of attacks in networks. In this section, we will
discuss different related works that are relevant to our research.

Kreutz et al. in [2] presented the seven threat vector in
SDN space. Our threat model has taken this as the basis
and enhanced it in the context of intra and inter-domain
communications in SDNs. In particular, we have shown how
a policy based security architecture can be used to counteract
flow related specific threats discussed in [2]]. Furthermore, [2]]
advocates the need to consider security and dependability in
such networks. Currently we are in the process of developing
a trust model for SDN, which addresses trust relationships
between devices, switches, controllers and their applications;
the proposed policy based security architecture together with
the trust model will help to achieve security and dependability
properties in SDNs.

Clark in RFC1102 described policy-based routing for legacy
inter-domain networks [4]. He proposed a language based
approach to policy specification to control routing of packets
within autonomous system domains. This work formed the
basis of our security policy language in our security archi-
tecture. Tsudik et al. in [20] introduced security measures
to policy-based inter-domain routing. Their work was mainly
concerned with key management using symmetric keys to
secure communications in AS domains. We have used Clark’s
policy language syntax and extended it to develop fine grained
security policy specifications in SDN for both intra and
inter domain communications. We have developed a security
architecture which enables the enforcement of these security
policies in the Open Flow switches on the traffic originating
from the end hosts and users connected to these switches.
As mentioned before, we will be extending this security
policy based architecture with key management to secure
communcations using a similar approach to that suggested in
[20]. As indicated earlier, this extension on key management
is traditional and well-known. The novelty of our proposed
security architecture is the use of policy based specifications
enabling fine grained path and flow based policies for multiple
domains as well as the ability to capture dynamic aspects
of the network and flow context within these policy based
specifications enabling the detection of attacks. This extends
our previous work on policy based approach for intra-domain

16

communications [21]] and develops a comprehensive security
architecture for end to end services across multiple domains.

Peter et al. in [22] discussed about BGP issues in SDN and
proposed an application-based routing architecture. OpenDay-
light [23]] and ONOS [24] have followed this approach but
have limited features to establish communications between
SDN Controllers in autonomous systems using BGP. Open-
Daylight uses SDNi protocol [25] to exchange state informa-
tion between domain Controllers. On the other hand, ONOS
uses SDN-IP [26] to communicate with other autonomous
system SDN Controllers. The core features of the BGP such as
no explicit support for iBGP sessions, IPv6 and limitations on
the number of routes [26] are the major weaknesses of SDN-
IP. Routing Control Platform (RCP) [27]] for SDNs uses BGP
route speakers which are different from IP forwarding plane.
Our PbSA for SDNs also uses application-based approach and
emphasizes the need for policy-based routing for both intra and
inter-domain communications in SDNs.

Fresco is a modular security framework designed explicitly for
NOX controllers [28]. It provides a development environment
which allows modules to be developed in terms of scripts that
can help to detect specific attacks such as threshold based
attacks, and drop or quarantine the malicious packets. Their
focus is mainly on the framework and development environ-
ment, particularly aimed at a single domain. Our approach in
contrast considers a security architecture that allows security
policy specifications for controlling flows in both intra and
inter domain SDN environments as well as enabling authorized
access to services across multiple domains. Furthermore, our
architecture enables fine grained flow and path based policies
that are relevant for critical applications. As part of our
architecture implementation, we will be exploring the use of
Fresco Development Environment (FRESCO DE) to enable
automatic translation of our flow policies into rules in the
OpenFlow enabled switches.

SDN Controllers such as Maple [[29]], Nettle [30] and flow lan-
guages like Flow-based Management Language (FML) [31],
Frenetic [32]] and Pyretic [33]] provide ways to express high-
level network policies using Haskell and Python to manage
intra-domain SDN interactions. Lee et al. [34]] uses SDN
based policy management functions to logically separate the
network services thereby decreasing the attack surface and
then combining them to create composite services. Our ap-
proach is different from the one proposed in [34]; however,
in principle, we can also take advantage of such an approach
and partition our security policy specifications based on, for
instance, virtualised services. Sahay et al. in [35] proposed
a dynamic policy enforcement framework that allows ISPs to
specify security policies to mitigate the impact of network
attacks by taking into account the specific requirements of
their customers. Their focus is on the use of SDN to gather
information from ISP network devics to detect and mitigate
attacks. Again this is different to our architecture which is
concerned with policy based specification of authorized flows
in intra and inter domain SDN as well as use of these policies
in the detection and mitigation of attacks.

Some other related works include the following: NetPlumber,

which is concerned with checking the reachability properties
of flows in OpenFlow Network [36]; Athena, which is a
distributed anomaly detection framework for detecting packet
anomaly in SDN [37]]; and the work in [38] considering the
use of OpenFlow Packet_in messages to generate topology
poisoning attacks. Though they involve security attacks and
SDN, they are not directly related to our work on security
policy based management and provision of secure end to end
flows and services across multiple domains in SDNs.

VIII. CONCLUSION

In this paper, we have presented a policy based security
architecture for distributed SDN, enabling secure intra and
inter-domain communications and flows between different
end hosts across multiple domains. Our security architecture
uses a policy language based approach to specifying security
requirements at a fine granular level to control the flow of
information in a multi-domain SDN environment. In large
networks with multiple autonomous domains crossing organi-
zational boundaries, such a policy based security architecture
provides a convenient way for dealing with data flows across
different jurisdictions satisfying different constraints. In par-
ticular such an approach is useful when it comes to flow of
sensitive information and traffic which need to satisfy specific
routing and path security constraints, in addition to traditional
congestion and cost requirements. Our architecture is able
to specify various security policies at fine granular level,
based on a variety of attributes of users, devices/ switches,
services, location as well as security labels associated with the
switches and Controllers in different domains. An important
characteristic of our architecture is its ability to specify path
and flow based security policies, which is a distinct advantage
for SDN based services and applications. This enables us
to specify requirements such as certain flows need to go
through a path of switches satisfying certain constraints based
on different attributes. This also enables to define prohibited
paths for certain types of traffic or even the need for certain
switches to be obligatorily traversed for certain flows. Such
path based policies are not only relevant in security critical
applications but also useful in normal applications which
may have different requirements for different types of traffic.
We have analysed the performance characteristics of our
architecture as well as discussed how the architecture is able
to counteract various security attacks and meet the different
security requirements using the policy based mechanisms.
The ability to distribute security capabilities intelligently as
a service layer and to have a dynamic security policy based
approach to securing a multitude of devices against attacks are
important contributions of this paper.

As further work, we are exploring several extensions to our
architecture. First, we are currently in the process of extending
the implementation of intra-domain key management to inter-
domain key management. To achieve secure communications,
our earlier architecture [21]] supports on demand confidential-
ity and integrity of traffic at the switches. The key management
module that we had developed in the Controller employs sym-
metric keys for securing the communications within a domain.
We had extended the OpenFlow protocol to distribute the keys

in a secure manner. We had also extended the functionality
in the switches to receive the keys. We have not described
this key management functionality of our architecture in this
paper due to space considerations. We are currently extending
these key management mechanisms between different SDN
Controllers to achieve secure communications in an inter-
domain setting. This involves the traditional hybrid key man-
agement scheme with both public key and symmetric key
based techniques. This is being done to achieve completeness
in the security architecture. Second, we are developing a
formal model that captures the essential features of SDN
behaviour and are introducing a formal language for specifying
intra and inter domain flows considered in this paper. We
plan to specify the security policies proposed in this paper
formally for this SDN model and develop proof techniques
for validating the behaviour of the SDN model against the
security policies. Using this method, we plan to formally prove
certain security properties derived from the policies, which
we believe will be helpful to demonstrate a higher level of
assurance of the policy based security architecture enabled
SDN applications and services.

Acknowledgement: The first author would like to thank De-
fense Science Technology Group (DSTG), Australia and in
particular Dr Anton Uzunov, for supporting this work under
the CERA Programme.

REFERENCES

[1] O. N. Foundation, “Sdn: The new norm for networks,” https:
/Iwww.opennetworking.org/images/stories/downloads/sdnresources/
white- papers/wp-sdn-newnorm.pdf[Accessed12Dec.2015].

[2] D. Kreutz et al., “Towards secure and dependable software-defined
networks,” in Proc of 2nd ACM SIGCOMM workshop on Hot topics
in Software Defined Networking. ACM, 2013, pp. 55-60.

[3] R.Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security

& Privacy, vol. 9, no. 3, pp. 49-51, 2011.

D. Clark, “Policy routing in internet protocols. request for comment

rfc-1102,” Network Information Center, 1989.

[5] N. McKeown et al., “Openflow: Enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69-74, 2008.

[6] D. Kreutz et al., “Software-defined networking: A comprehensive sur-
vey,” Proc of the IEEE, vol. 103, no. 1, pp. 14-76, 2015.

[71 M. Canini et al., “Software-defined networks: Incremental deployment

with panopticon,” IEEE Computer, pp. 56—60, 2014.

S. Lee et al., “The smaller, the shrewder: A simple malicious application

can kill an entire sdn environment,” in Proc 2016 ACM International

Workshop on Security in Software Defined Networks & Network Func-

tion Virtualization. ACM, 2016, pp. 23-28.

, “Delta: A security assessment framework for software defined

networks,” in Proc of NDSS, vol. 17, 2017.

K. Benton et al., “Openflow vulnerability assessment,” in Proc 2nd ACM

SIGCOMM workshop on Hot Topics in Software Defined Networking.

ACM, 2013, pp. 151-152.

M. S. Kang et al., “The crossfire attack,” in Security and Privacy (SP),

2013 IEEE Symposium on. 1EEE, 2013, pp. 127-141.

A. Studer et al.,, “The coremelt attack.” in ESORICS, vol. 5789.

Springer, 2009, pp. 37-52.

X. T. Phan et al., “A collaborative model for routing in multi-domains

openflow networks,” in Computing, Management and Telecommunica-

tions, International Conference on. 1EEE, 2013, pp. 278-283.

K. Ishiguro et al., “Quagga routing suite,” 2007.

J. Hart. (Nov 30, 2014) Sdn-ip tutorial. [Online].

https://wiki.onosproject.org/display/ONOS/SDN-IP+Tutorial

P. Mishra et al., “A detailed investigation and analysis of using machine

learning techniques for intrusion detection.” IEEE Communications

Survey and Tutorials, Accepted, 2nd April 2018.

S. Knight et al., “The internet topology z0o0,” IEEE Journal on Selected

Areas in Communications, vol. 29, no. 9, pp. 1765-1775, 2011.

[4

=

[8

[t}

[9]
[10]

[11]

[12]

[13]

[14]

[15] Available:

[16]

[17]

https://www.opennetworking.org/images/stories/downloads/sdnresources/white-papers/wp-sdn-newnorm.pdf [Accessed 12 Dec. 2015]
https://www.opennetworking.org/images/stories/downloads/sdnresources/white-papers/wp-sdn-newnorm.pdf [Accessed 12 Dec. 2015]
https://www.opennetworking.org/images/stories/downloads/sdnresources/white-papers/wp-sdn-newnorm.pdf [Accessed 12 Dec. 2015]
https://wiki.onosproject.org/display/ONOS/SDN-IP+Tutorial

(18]

[19]

[20]

[21]

[22]

(23]
[24]
[25]
[26]

(271

(28]

[29]

(30]

[31]

[32]
[33]
[34]

[35]

(36]

(371

(38]

M. GroBmann et al., “Auto-mininet: Assessing the internet topology
700 in a software-defined network emulator,” Messung, Mellierung un
Bewertung von Rechensystemen (MMBnet), vol. 7, 2013.

D. Smyth et al., “Exploiting pitfalls in software-defined networking
implementation,” in Cyber Security And Protection Of Digital Services
(Cyber Security), 2016 International Conference On. 1EEE, 2016, pp.
1-8.

D. Estrin et al., “Security issues in policy routing,” in Security and
Privacy, 1989. Proc., IEEE Symposium on. 1EEE, 1989, pp. 183-193.
K. K. Karmakar et al., “Policy based security architecture for software
defined networks,” in Proc 31st Annual ACM Symposium on Applied
Computing. ACM, 2016, pp. 658-663.

P. Thai et al., “Decoupling policy from routing with software defined
interdomain management: interdomain routing for sdn-based networks,”
in Computer Communications and Networks (ICCCN), 2013 22nd
International Conference on. 1EEE, 2013, pp. 1-6.

“Opendaylight,” https://www.opendaylight.org/.

“Open network operating system,” http://onosproject.org/.

H. Yin et al., “Sdni: A message exchange protocol for software defined
networks across multiple domains,” IETF Draft, Work in Progress, 2012.
A. Koshibe, “Appliction for onos,” https://wiki.onosproject.org/display/
ONOS/SDN-IP+Architecture,

C. E. Rothenberg et al., “Revisiting routing control platforms with
the eyes and muscles of software-defined networking,” in Proc First
Workshop on Hot topics in software defined networks. ACM, 2012.
S. Shin et al.,, “Fresco: Modular composable security services for
software-defined networks.” in NDSS, 2013.

A. Voellmy et al., “Maple: simplifying sdn programming using algorith-
mic policies,” in ACM SIGCOMM Computer Communication Review,
vol. 43, no. 4. ACM, 2013, pp. 87-98.

——, “Nettle: Taking the sting out of programming network routers,”
in Practical Aspects of Declarative Languages. Springer, 2011.

T. L. Hinrichs et al., “Practical declarative network management,” in
Proc of the 1st ACM Workshop on Research on Enterprise Networking.
ACM, 2009, pp. 1-10.

N. Foster et al., “Frenetic: A network programming language,” in ACM
SIGPLAN Notices, vol. 46, no. 9. ACM, 2011, pp. 279-291.

J. Reich et al., “Modular sdn programming with pyretic,” Technical
Reprot of USENIX, 2013.

W. Lee et al., “Security policy scheme for an efficient security architec-
ture in software-defined networking,” Information, vol. 8, no. 2, 2017.
R. Sahay et al., “Adaptive policy-driven attack mitigation in sdn,” in
Proc st International Workshop on Security and Dependability of Multi-
Domain Infrastructures. ACM, 2017, p. 4.

P. Kazemian et al., “Real time network policy checking using header
space analysis,” in Proc of the 10th USENIX Conference on Networked
Systems Design and Implementation, CA, USA, 2013, pp. 99-112.

L. S et al.,, “Athena: A framework for scalable anomaly detection in
software-defined networks,” in 47th IEEE/IFIP International Conference
on Dependable Systems and Networks, June 2017, pp. 249-260.

D. S. et al., “Packet injection attack and its defense in software-defined
networks,” IEEE Transactions on Information Forensics and Security,
vol. PP, no. 99, 2017.

Vijay Varadharajan is the Global Innovation Chair
Professor in Cyber Security at the University of
Newcastle. He is also the Director of the Advanced
Cyber Security Research Centre. Vijay has published
more than 400 papers in international journals and
conferences. Vijay has been/is on the Editorial Board
of several journals including ACM TISSEC, IEEE
TDSC, TIFS and TCC.

Uday Tupakula is a Research Fellow at the Ad-
vanced Cyber Security Research Centre. In 2006, he
completed his Ph.D. under the supervision of Prof.
Varadharajan of University of Newcastle. Uday has
50 publications in different research areas such as
network security, denial of service attacks, MANET
security, and secure virtual systems.

Kallol Karmakar is a Ph.D. student at the Ad-
vanced Cyber Security Research Centre. He is work-
ing on Software Defined Network security.

Michael Hitchens is the Associate Dean of Quality
and Standards in the Faculty of Science, Macquarie
University. His research interests access control,
security protocols, trust in distributed systems and
game design.

https://www.opendaylight.org/
http://onosproject.org/
https://wiki.onosproject.org/display/ONOS/SDN-IP+Architecture
https://wiki.onosproject.org/display/ONOS/SDN-IP+Architecture

	Introduction
	SDN Architecture and Threat Model
	Basic SDN Architecture
	Our Network Architecture and Threat Model
	Security Requirements

	Policy based SDN Security Architecture
	Security Architecture Overview
	Security Policy Specifications
	Security Architecture Walk-through

	Security Architecture Implementation
	Implementation Components
	Network Setup
	Application Modules
	Policy Example in the Database

	Results
	Implementation Examples
	Intra-domain Scenario
	Inter-domain Scenario
	Inter-domain Scenario
	Flooding Attacks from Malicious Hosts

	General Performances
	Attack Performance
	Scalability
	Case Study

	Security Analysis
	Related Work
	Conclusion
	References
	Biographies
	Vijay Varadharajan
	Uday Tupakula
	Kallol Karmakar
	Michael Hitchens

	36774.pdf
	NOVA

